Abouzar Gholamalizadeh | Climate-Responsive Architecture | Research Excellence Award

Dr. Abouzar Gholamalizadeh | Climate-Responsive Architecture | Research Excellence Award

Researcher | University of Tehran | Iran

Abouzar Gholamalizadeh is a researcher and academic affiliated with the Management College of the University of Tehran, specializing in industrial management, operations research, and decision sciences. He has gained extensive professional experience through academic research, interdisciplinary projects, and contributions to analytical and decision-support frameworks in energy and public-sector management. His research focuses on mechanism design, energy management, quantitative decision-making methods, spatial multi-criteria analysis, and sustainable urban systems, with peer-reviewed publications in leading international journals such as Sustainable Cities and Society and Transformations in Business and Economics. His scholarly work advances urban sustainability, photovoltaic system planning, thermal comfort assessment, and risk-aware procurement mechanisms.He also serves as a reviewer for internationally recognized journals, including Energy Conversion and Management and Kybernetes, reflecting his standing in the academic community and commitment to research quality and scholarly service, with a research impact comprising 11 citations, 3 publications, and an h-index of 1.

                              Citation Metrics (Scopus)

12

10

8

6

4

2

0

 

Citations
11
Documents
3
h-index
1

Citations

Documents

h-index

View Scopus Profile
  View Google Scholar Profile
  View ORCID Profile

Featured Publications

Mahyar Fazli | Green Building and LEED Design | Best Innovation Award

Dr. Mahyar Fazli | Green Building and LEED Design | Best Innovation Award

Research Assistant | Sharif University of Technology | Iran

Mahyar Fazli is a Research Assistant in the Department of Aerospace Engineering at Sharif University of Technology, specializing in thermoacoustics, renewable energy systems, waste heat recovery, pulsating heat pipes, and advanced thermal management technologies. His professional experience includes leading simulation, analysis, and design efforts on thermoacoustic refrigeration and power-generation systems, contributing to the development of high-efficiency thermal devices, and advancing research on pulsating heat pipes, nanofluid-based solar receivers, and Organic Rankine Cycle applications. He has authored multiple high-impact publications in reputable journals, including comprehensive reviews, experimental investigations, and optimization studies that address thermoacoustic performance, exergy analysis, and innovative cooling strategies. His contributions include conceptual design of thermoacoustic integration in sustainable architecture, advancements in pulsating heat pipe geometries, and methodologies for enhancing heat-driven refrigeration systems. In addition to his research output, he has an extensive record of peer-review service for major international journals across renewable energy, thermal engineering, artificial intelligence, and fluid dynamics, reflecting his recognition as an emerging expert in the field. He actively engages in scholarly communities through editorial and review activities, professional memberships, and interdisciplinary collaborations, demonstrating a strong commitment to advancing sustainable energy technologies and improving thermal system efficiency. His research impact includes 517 citations, 8 publications, an h-index of 7.

Featured Publications

1. Ansari M., Basiri M., Fazli M., Mazaheri K., Hosseinzadeh S., Matini M.R., Innovative integration of thermoacoustic technology in architectural design for sustainable cooling: A conceptual design. Energy, 2025, 139102.

2. Mahmoudi A., Fazli M., Morad M.R., A recent review of waste heat recovery by Organic Rankine Cycle. Appl. Therm. Eng., 2018, 143, 660–675.

3. Mehrjardi S.A.A., Khademi A., Fazli M., Optimization of a thermal energy storage system enhanced with fins using generative adversarial networks method. Therm. Sci. Eng. Prog., 2024, 49, 102471.

4. Mahmoudi A., Fazli M., Morad M.R., Gholamalizadeh E., Thermo-hydraulic performance enhancement of nanofluid-based linear solar receiver tubes with forward perforated ring steps and triangular cross section: A numerical investigation. Appl. Therm. Eng., 2020, 169, 114909.

5. Fazli M., Mehrjardi S.A.A., Mahmoudi A., Khademi A., Amini M., Advancements in pulsating heat pipes: Exploring channel geometry and characteristics for enhanced thermal performance. Int. J. Thermofluids, 2024, 22, 100644.

Mahyar Fazli’s work advances next-generation thermal and energy systems by developing high-efficiency thermoacoustic, heat-transfer, and waste-heat-recovery technologies that address global sustainability challenges. His research contributes to cleaner energy futures by improving cooling systems. Through innovative modeling, design, and interdisciplinary collaboration, he drives scientific progress toward more efficient and environmentally responsible energy systems worldwide.